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Porosity-dependence of ultrasonic velocity in 
sintered materials- a model based on the 
self-consistent spheroidal inclusion theory 

K. K. PHANI 
Central Glass and Ceramic Research Institute, Calcutta 700 032, India 

The porosity dependence of ultrasonic velocity in porous sintered materials has been 
modelled using the self-consistent spheroidal inclusion theory. Considering the pores to be 
oblate spheroids, an effective aspect ratio has been determined from experimental data, 
which serves as an additional parameter to describe the observed variation in ultrasonic 
velocity with porosity. With the exception of two cases in the ten investigated, this single 
parameter describes satisfactorily the variation of both longitudinal ultrasonic velocity and 
transverse ultrasonic velocity with volume fraction of pores. 

1. Introduction 
The ultrasonic velocity measurement method provides 
a useful and convenient non-destructive technique for 
estimating the porosity fraction in polycrystalline 
materials and has been the subject of several experi- 
mental investigations [-1-12]. Theoretically, the por- 
osity-dependence of ultrasonic velocity can be derived 
from the theories dealing with the elastic properties of 
porous material utilizing the velocity-elastic property 
relations given by physical acoustics theory. In addi- 
tion, theories based on acoustic scattering [-13 16] for 
ultrasonic velocity variation in two-phase composites 
can also be used to derive such relations considering 
one of the phases to be pores. However, the compari- 
son between experiment and theory has not received 
much attention in the literature. To the author's 
knowledge, the only such application of theories to 
experimental data has been the work of Panakkal 
et al. [11, 121, who compared the observed variations 
of the ultrasonic velocities in sintered clay ceramics 
and powder iron compacts with the theoretical predic- 
tions of both elasticity and scattering theories. Large 
deviations were observed from the theoretically pre- 
dicted values and this was attributed to the non- 
spherical shape of the pores, because the theories used 
were based on spherical pores. They suggested that 
a more rigorous model which took into account the 
non-spherical nature of the pores would be able to 
explain the experimental data better. 

In a recent review [-17], Roth et aI. analysed 
the experimental data on ultrasonic velocity versus 
porosity for various porous sintered materials, Their 
analysis showed that the experimental data for both 
longitudinal ultrasonic velocity and transverse ultra- 
sonic velocity tend to vary linearly with porosity, and 
the slopes of the fitted equations varied with the ma- 
terial. Even the slope for what was believed to be the 
same material varied for different investigations. One 
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of the factors suggested to account for these variations 
was pore-size distribution and its geometry. 

This paper presents a comparison between theory 
and experiment based on the self-consistent spher- 
oidal theory to determine the importance of pore- 
geometry factor as an additional parameter to 
describe ultrasonic velocity versus porosity data on 
sintered materials. 

2. Theory 
A brief review of various theories based on the self- 
consistent scheme was given by Dean [18]. In the 
self-consistent spheroidal inclusion theory, the inclu- 
sion is considered as spheroids and characterized by 
the aspect ratio, ~, which is defined as the ratio of the 
minor axis to the major axis. For a = 1 spheroids 
become spheres and as & approaches zero, oblate 
spheroids become disc-shaped and prelate spheroids 
become needle-shaped. Dean [18] used the self-consis- 
tent spheroidal theory given by Wu [19] to analyse 
the elastic moduli versus porosity data on sintered 
materials. Considering the pores to be oblate spher- 
oids and using an effective aspect ratio as the single 
variable parameter, he obtained excellent agreement 
between the theory and experiment for six cases out 
of seven investigated. The same procedure is adopted 
here to analyse ultrasonic velocity versus porosity 
data. 

The analysis is based on the following assumptions 
(1) Pores are oblate spheroids and are randomly 

oriented so that on a macroscopic scale the material 
behaviour is isotropic. 

(2) A batch of sintered materials with individual 
members having large ranges of porosities may have 
pores with aspect ratio of individual pores varying 
over the range 0 to 1, but their effect on ultrasonic 
velocity can be approximated by a material having 
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same volume fraction of pores with individual pores 
having identical aspect ratio. This single aspect ratio is 
defined as the "effective" aspect ratio which approxim- 
ates the result of a spectrum of aspect ratios. 

The validity of this second assumption has already 
been shown by Dean [t8] for elastic moduli-porosity 
relation. The same treatment can be used to show that 
it is valid for ultrasonic velocity also. Based on the 
above assumptions and considering the bulk modulus 
of air in the pores as negligible, the effective bulk 
modulus, K, and the effective shear modulus, G, of 
a porous body having a volume fraction of porosity, d~, 
is given by Wu's [19] theory as 

K = K0[1 - ~)Po(~,R)] (1) 

G = Go[t - dOOo(a,R)] (2) 

where Ko and Go are the bulk modulus and the shear 
modulus of pore-free material respectively; Po and 
Q0 are functions of the effective aspect ratio 0{ of 
spheroids, and R, defined as 

R = 3G/(3K + 4G) (3) 

The functions Po and Qo for oblate spheroidal pores 
are given in Appendix 1. 

Longitudinal ultrasonic velocity, V1, and transverse 
ultrasonic velocity, Vs, are related to K and G by the 
relations 

V~ = [(K + 4/3G)/p] ~/2 (4) 

G = EG/O] 1/2 (5) 

where p is the density of the material, p is related to 
the density of pore-free material, Po, by the relation 

p = 19o(1 - (~) (6) 

Substitution of Equations 4 and 5 into Equation 
3 along with Equations 1 and 2 gives the relation 

3RV2o[t -- 0Po(~, R)] + V2o[4ORPo(a, R) 

- -  d 2(4R - 3 )  Q o ( ~ , R )  - 3 ]  = 0  ( 7 )  

where the subscript 0 refers to pore-free material. 
Further substitution of the relation 

( V l O / 1 ) s 0 )  2 __ 2(Vo - 1) (8) 
(2Vo - 1) 

in Equation 7 leads to the relation 

6R(vo - 1)[1 - d2Po(a, R)] + (2Vo - 1) 

[4~RPo(a, R) - ~)(4R - 3)Qo(a, R) - 33 (9) 

For particutarwalues of Vo and a, Equation 9 is a fifth 
degree equation in R. However, for spheres, i.e. a = 1, 
the equation reduces to a .quadratic .one which can 
be solved explicitly. A computer program has been 
run to solve the equation by the Newton-Raphson 
method. Once R has been determined, values of 
Po and Qo follow from the relations given in Appendix 
t and the velocity values V~.andi~V~as a:function .of 
r~ are 0bta i~d! f rom ,Equations ::~ and 5 ,gsingEqua- 
tions 1 and:2. 

3. Fitting experimental data to the theory 
To obtain the value of the effective spheroid aspect 
ratio which fits both the measured longitudinal velo- 
city and transverse velocity versus porosity data, the 
least square inethod suggested by Dean [18] was 
adopted. Numerical solutions of Equations 4 and 5 for 
longitudinal and transverse velocity versus porosity 
over large ranges of Poisson's ratio of pore-free mater- 
ial and spheroid aspect ratio show that both these 
velocity-porosity relations have noticeable curvature. 
Thus the theoretical results were fitted to the relations 

VI = V10[1 - -  d~e(CqVo) - ~2f(a,  Vo) ] (10) 

Vs = Go[1 - ~g(or V o )  - O2h(~, V o ) ]  (11) 

where the functions e, f, g and h are least-square fit to 
the velocity values determined from Equations 4 and 
5 for various values of the effective aspect ratio, a, and 
Poisson's ratio, v0. The basis for choosing second- 
degree poynomials for both the equations is that 
Dean's [18] analysis indicates that variation of effec- 
tive Young's and shear moduli with porosity follow 
a linear and a second-degree polynomial equation, 
respectively. Combining these equations with Equa- 
tions 4 and 5 and neglecting the terms of higher order 
than ~2, leads to Equations 10 and 11. 

Each of the least-squares coefficients e, f, g and 
h was calculated for values of a = 0.001, 0.05, 0.1 .. . .  , 
0.95, 1, and Vo = 0.14, 0.16,.. . ,  0.34, 0.36. In all cases 
the regression coefficient was better than 0.998. 
A polynomial least-squares fit of the form 

e(~, Vo) = el (Vo)/O~ q- e2(vo) 

+ ae3(vo) + a2e4(vo) (12) 

with a similar fit for f (a ,  v0), 9(a, Vo) and h(a, Vo), 
described the variation in a with regression coefficient 
better than 0.980 in each case. Finally the functions 
ei(Vo), f/(v0), gdVo) and hi(vo) were fitted quadratically 
to the variation in Vo with regression coefficient better 
than 0.990 in each case. The values of these coefficients 
are given in Appendix 2. 

Using Equations 10 and 11 as the fitting equations 
for the experimental data, it follows 

Y, = (Vlo - V1,)/qbiVm = e(a, Vo) + % f ( u ,  Vo) 

(13) 

zl = (Vso - Vsi)/qbiVso = g(:*, Vo) + d~ih(a, Vo) 

(14) 

where i = 1, 2 , . . . ,  n is the number of data. The func- 
tion to be minimized is the sum of squares of the 
residues of Equations 13 and 14, i.e. 

S = 

n 

i = . , l  d =/it 

2 7 3  



OS/Oa = 0 gives the condition equation as 

~e 

+ [E~OY - eZ4) - f Z ~  z 

+ Z z - n o - h Z ? 9  0~ 

+ [ Z , z - g Z , - h Z ,  2] ~h 
~ =  0 

(16) 

where the summation is taken over i =  1 to n. 
Equation 16 is a sixth-degree equation in a and it is 
solved by the Newton-Raphson method. This method 
of finding the best value of aspect ratio to fit both 
longitudinal and transverse velocity data was used on 
seven groups of data. The results are given in the next 
section. 

4. Results 
This section presents the analysis of seven data 
groups. Among these, six groups were taken from 
the twelve groups of data analysed by Roth et al. 
[17]. These include one set each for SiC, A1203, 
YBa2Cu3OT-x, porcelain; two sets for Si3N4, and 
three sets for tungsten. One more set for sintered iron 
powder compacts was taken from the literature [11]. 
Only those data sets for which sufficient data were 
available over a reasonably wide porosity range were 
selected for this analysis. The data sets were fitted by 
the method described above to find the best aspect 
ratio for oblate spheroidal theory. The velocity values 
for pore-free material were estimated from single-crys- 
tal constants. Unfortunately, except for A1103, single- 
crystal constants for none of the materials analysed 
here were available. For  these cases, velocity values of 
pore-free material obtained by Roth et al. [17] by 
regression analysis of data, were used. 

4.1. SiC 
Experimental data on SiC reported by Baaklini et aI. 
[-6] are shown in Fig. 1. The data were read from the 
plot given in their paper. This was the only set of data 
for which information about mean pore size and 
shape was available. However, the data were avail- 
able for longitudinal velocity only. So Equation 16 
was minimized for longitudinal velocity only using 
Vlo = 1.21 c m gs -  t. The solution of the self-consistent 
oblate spheroidal theory with a = 0.262 is also shown 
in Fig. 1. Although the polynomial fit to the theory 
was used to find the best-fit value of ~, the curve 
shown was calculated using the implicit formulas, 
Equations 4 and 5. The theory agrees with the data 
extremely well. The low value of a = 0.262 indicates 
that the pores are more disc-shaped than 
needle-shaped. This agrees well with the pore shape 
reported by the authors, which is also shown in Fig. 
1 for one batch of samples. 
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Figure 1 SiC data from Baaklini et al. E6]; constants for theoretical 
curve Vlo = 1.21 cm gs-1 and cz = 0.262. (E3) Longitudinal. 

4.2. Si3N4 
Experimental data on hot-pressed SisN4 by McLean 
et al. are shown in Fig. 2. The data were taken from 
the report of Roth et al. [17]. The theoretical calcu- 
lations were based on Vlo = 0.977 cm gs- 1 and Vso = 
0.585 cm g s -  1. These values were calculated by Roth 
et al. [17] (Table II in [17]) from the values of elastic 
moduli of fully dense polycrystalline material. The 
aspect ratio for the theoretical curves shown in Fig. 2 
is ~ = 0.441. The experimental data agree well with 
the theory. 

The second group of data obtained by Thorp and 
Bushell [7] for reaction-bonded SisN4 are shown in 
Fig. 3. The theoretical calculations were again based 
on velocity values given above. The aspect ratio for 
the theoretical curves shown in Fig. 3 is ~ = 0.621. 
Here the experimental data are in total agreement 
with the theory. 

The values of aspect ratio of 0.441 and 0.621 indi- 
cate that the pore shape is more tilted towards spher- 
ical than disc-shaped 

4.3. AI203 
Fig. 4 shows the experimental data on A1203 reported 
by Nagarajan [2]. The velocity values of pore- 
free material were taken as V10 = 1.11 crags -a and 
Vso = 0.64 cm g s -  1 for theoretical calculations. These 
values were calculated from the mean polycrys- 
talline (VRH) values for K o = 2 5 1 . 0 G P a  and 
Go = 162.9 G P a  reported by Anderson et al. [20]. The 
best fit was obtained .for a = 0.572, which is also 
shown in Fig. 4. In this case the theory fails to explain 
the experimental data, especially the longitudinal 
velocity for which the deviations from the theory at 
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Figure 2 Hot-pressed Si3Ni4 data from Roth et al. [17]; constants  
for theoretical curves Vlo = 0.977 cm g s -  1, Vso = 0.585 cm g s -  1 and 
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Figure 4 A1203 data from Nagara jan  [2]; constants  for theoretical 
curves vl0 = 1.11 cm~ts 1, v~o = 0 .64crags  -1 and a = 0.572. (l~) 
Longitudinal,  (Q)  transverse. 
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Figure 3 React ion-bonded Si3N4 data from Roth et al. [7]; con- 
stants used for theoretical curves are the same as for Fig. 2, and the 
aspect ratio ~ = 0.621. ([~) Longitudinal,  ((2)) transverse. 

low porosities are more than 10%. Nagarajan [2] 
compared the elastic moduli values calculated from 
the measured ultrasonic velocities with the models 
based on elastic-bounds and concluded that a model 
based on the cylindrical pore with the pores orientated 

perpendicular to the stress described his data better. 
Thus the difference in the pore-structure model may 
be the cause of failure of the theory in the present case. 

4.4. YBa2Cu307- x 
Experimental data on YBa2Cu3OT-x by Roth et  al. 

[21] are shown in Fig. 5. The shear velocity value has 
been reported only for a single porosity. The figure 
also shows five other data points of shear velocity 
taken from other sources [-22 25]. However, they 
have not been included in the regression analysis. 
The theoretical calculations were based on the values 
o f  V10 = 0.565 cmgs -1 and Vso = 0.313 cm~ts -1 of 
theoretically dense material. These values were taken 
from Roth et  al. (Table II in [-17]). The theoretical 
curves are for an aspect ratio ~ = 0.357. The theory 
shows excellent agreement with the experimental data. 
It may be noted that the shear velocity values reported 
by other researchers [-22, 23, 25], though not included 
in the regression analysis, also show good agreement 
with the theory, except for that reported by Round 
and Bridge [24]. 

4.5. Porcelain 
Fig. 6 shows another set of data which the oblate 
spheroidal theory fails to explain. These data on por- 
celain were reported by Boisson et  aI. [10]. The velo- 
city values of Vlo =0.728cmgs 1 and Vso = 
0.448 cm gs - 1 reported by Roth et al. [-17] were used 
in the analysis. The best-fit theoretical curve shown in 
the figure corresponds to ~ = 0.294. Because no in- 
formation on the pore structure of the material is 
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Figure 5 YBa2Cu3OT-= data from Roth et al. [21]; constants  for 
theoretical curves v~0 = 0.565 cm g s -  2, v,0 = 0.313 cm gs ~ and 
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Figure 6 Data  on porcelain from Boisson et al. [10]; constants  for 
theoretical curves V~o = 0.728 c m g s  2, Vso = 0.448 c r a g s -  ~ and 

= 0.294. ([]) Longitudinal,  (G)  transverse. 

available, no suitable explanation can be offered for 
the failure of the theory. 

4.6. Tungsten 
Figs 7 and 8 show three data sets on tungsten by 
Smith and Lopilato [-1]. Only the longitudinal 
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Figure 8 Data  on Tungsten  (initial particle size 18 tim) from Smith 
and Lopilato [-l]; constant  used for the theoretical curve is the same 
as for Fig. 7 and ~ = 0.453. (7q) Longitudinal.  

velocity values were reported. Two sets shown in 
Fig. 7 had the same starting powder size of 4 pm, but 
were from a different source, while the set shown in 
Fig. 8 had a starting powder size of 18 gm. Theoretical 
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Figure 9 Data on sintered iron powder compacts from Panakkal et 
al. [11]; constants for the theoretical curves rio = 6.08 mmgs -~, 
V~o = 3.29mmgs -a and ct = 0.273. (~) Longitudinal, (C)) trans- 
verse. 

analysis of individual sets gave similar values of aspect 
ratio for the sets with 4 ~tm starting powder size, so 
they were combined together. Theoretical analysis 
based on Vio = 0.509 cmps -1 yielded best-fit aspect 
ratios of 0.725 and 0.453 for 4 and 18 gm starting 
powder size, respectively. Theoretical curves corres- 
ponding to these aspect ratios are also shown in the 
respective figures. For  18 ~tm starting powder size the 
theory shows excellent agreement with the data. With 
the exception of the 42% porosity velocity value, the 
data for 4 gm starting powder size agree well with the 
theory. The aspect ratio of 0.725 for 4 gm starting 
powder size is almost twice that for the 18 gm powder 
size, indicating that the pores in these specimens are 
closer to spherical shape than those of 18 gm powder 
size specimens. 

able parameter used in this analysis is the aspect ratio 
of pores, thus establishing pore geometry as one of the 
major factors affecting ultrasonic velocity in porous 
material. Out of the two sets of data which remained 
unexplained, the one on A1203 may again possibly be 
explained based on a model different from that used 
here for pore geometry and orientation. However, 
for the other unexplained data on porcelain, a similar 
conclusion cannot be drawn in absence of micro- 
structural details. 

It may be noted that the values of effective aspect 
ratio obtained for different materials varied over the 
range 0.262 to 0.725. The minimum of 0.262 was 
obtained for SiC indicating disc-shaped pores and the 
maximum of 0.725 for tungsten indicating the pores to 
be of sphere-like shape. However, from this, no con- 
clusion can be drawn whether any relation exists 
between the effective aspect ratio and the process of 
fabrication or the final product, except for the hint 
that it may be dependent on initial particle size as 
shown by the results of two different starting powder 
sizes of tungsten or on the process of sintering as 
shown by the results of hot-pressed and reaction- 
bonded silicon nitride. 

6. Conclusion 
The porosity dependence of ultrasonic velocity in sin- 
tered materials has been modelled based on the self- 
consistent oblate spheroidal theory. Ten sets of data 
reported in the literature have been analysed based on 
this theory. With the exception of the data on A1203 
and porcelain, the ultrasonic velocity of porous sin- 
tered marterials is satisfactorily modelled by oblate 
spheroidal pores with various sintering processes 
yielding different aspect ratios for the spheroids. Data 
analysis of the results indicate that the pore geometry 
is the major factor affecting the ultrasonic velocity in 
porous materials. 
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4.7. Sintered iron powder compacts 
The data on sintered iron powder compacts reported 
by Panakkal et al. [11] are shown in Fig. 9. 
The theoretical calculations were based on Vlo = 
6.08 mm ~ts- 1 and V~o = 3.29 mm gs 1. These values 
were calculated from the moduli values of electrolytic 
iron olEo = 212.0 GPa  and Go = 82.0 GPa  [11]. The 
theoretical curves shown in the figure correspond to 
an aspect ratio of 0.273. Here, again the experimental 
data agree well with the theory. 

5. Discussion 
Of the ten sets of data analysed, only two sets of data 
could not be fitted by the self-consistent oblate sphe- 
roidal theory. It may be recalled that the only adjust- 

Appendix 1 
The functions Po(~, R) and Qo(~, R) for the oblate 
spheroidal pores are given by 

Po(~, R) = F1/F2 (A1) 

1 [ ~  1 
Q0(ct, R) = ~ + F~ 

FsF4 + F6F7 - FsF9~ 

+ F2F4 J (a2) 

where 

F1 

f 2 

1 - ~ ( f +  O) + R ( 3 f +  ~0 - 4) (A3) 

RE20 - 2 f -  302 + 2 R ( f -  0 + 202)] 

(A4) 
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F3 = f +  30 - R ( f  + O) 

F4 = 1 - � 8 8  30 - R ( f - -  0)] 

Fs = f - -  R ( f  + 0 -- ~) 

F 6 = 

F 7 = 

F 8 - 

(A5) 

(A6) 

(a7) 

- f + R ( f  + 0) (A8)  

2 - �88 [3f + 90 - R (3 f  + 50)] (A9) 

- - 1 + � 8 9  ~ 0  + R ( 2  - � 8 9  

(A10) 

F9 = f - -  R ( f  - 0) (All) 

The functions 0 and f are given by 

0 - -  (1 - -  ~2 )3 /2  [ - C O S - - I ~  - -  (~(1 - -  (X,2)1/2 3 ( A 1 2 )  

~2(30 --  2) 
f -- 1 - -  ~2 (A13) 

For ~ = 1, Equations A12 and A13 are indeterminate. 
L'Hospital's rule yields 0(1)= 2/3 and f ( 1 ) =  - 2 / 5  
and the corresponding values for Po and (2o as 

Po(1, R) = 3/4R (A14) 

Qo/(1, R) = 15/(9 - 4R) (A15) 

Substitution of these equations into Equation 9 results 
in a quadratic in R. Thus there exists an explicit 
solution of Equation 9 for spherical voids and it is 
given by 

R = a - (a 2 - -  b) 1/2 (A16) 

where 

[13Vo - 11 - (21Vo - 9)0] 
a = (A17) 

8 ( V o -  1) 

3[12Vo - 6 -- (23Vo - 7)r 
b = (A18) 

16(Vo - 1) 

Once R has been determined, Po and Qo follow from 
Equations A14 and A15, and the velocities are 
given by 

V~/Vso = [(1 - 0Qo)] 1/2 (A19) 
j 

V,/Vm = [ 2 ( v ~  1) ] uz 
2 ~ o - - 1 ~  ( L ) ( A 2 0 )  

Appendix 2 
V 1 = Vlo  [1  - -  0e(a, R) - 02f (o~,  R)] (A21) 

Vs = Vso[1 - Og(o~,R) - O2h(a,R)] (A22) 

where each of functions e, f g and h are given as 

e(a,R) = el(vo)/a + e2 + aea(vo) + a2e4 

(A23) 
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and the variation with respect to Vo is given in terms of 
(7 = Vo - 0.25 as follows 

el ] I 0.2556 0.8671 3.5761 
e2 = --0.2516 1.5425 6.9485 

e3 -0.3159 --0.4111 -1.3444 

e4 0.4081 0.5865 5.8212 

I 
1 

x (7 

(y2 

(A24) 

k 

f2 
f3 
f4 

1.4783 

-0.6629 

-0.2368 

2.6021 

-8.3878 

19.2815 

2.3142 

-21.4989 

-37.4133 

85.8815 

10.2054 

- 108.8020 

] 
1 

(7 

(72 

(A25) 

91 

g2 

g3 

g4  

0.1321 -0.1881 -0.0714 

-0.2503 -0.5796 -0.9041 

-0.2253 0.0616 0.0059 

0.3541 0.1543 0.6494 

1 

(7 

(7 2 

(A26) 

h i  

h2 

h3 

h4 

2.5045 1.7706 -0.2572 

-3.3372 -3.5701 -1.1134 

-0.5338 -0.4318 -0.7178 

5.2192 3.8533 -0.2725 

i2] (A27) 
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